Multiscale three-point velocity increment correlation in turbulent flows
نویسندگان
چکیده
منابع مشابه
Multiscale modeling of incompressible turbulent flows
Developing an effective turbulence model is important for engineering applications as well as for fundamental understanding of the flow physics. We present a mathematical derivation of a closure relating the Reynolds stress to the mean strain rate for incompressible flows. A systematic multiscale analysis expresses the Reynolds stress in terms of the solutions of local periodic cell problems. W...
متن کاملCirculation Statistics in Three-Dimensional Turbulent Flows
We study the large λ limit of the loop-dependent characteristic functional Z(λ) =< exp(iλ ∮ c ~v ·d~x) >, related to the probability density function (PDF) of the circulation around a closed contour c. The analysis is carried out in the framework of the Martin-Siggia-Rose field theory formulation of the turbulence problem, by means of the saddle-point technique. Axisymmetric instantons, labelle...
متن کاملMultiscale model of gradient evolution in turbulent flows.
A multiscale model for the evolution of the velocity gradient tensor in turbulence is proposed. The model couples "restricted Euler" (RE) dynamics describing gradient self-stretching with a cascade model allowing energy exchange between scales. We show that inclusion of the cascade process is sufficient to regularize the finite-time singularity of the RE dynamics. Also, the model retains geomet...
متن کاملSpatial and velocity statistics of inertial particles in turbulent flows
Spatial and velocity statistics of heavy point-like particles in incompressible, homogeneous, and isotropic three-dimensional turbulence is studied by means of direct numerical simulations at two values of the Taylor-scale Reynolds number Reλ ∼ 200 and Reλ ∼ 400, corresponding to resolutions of 512 and 2048 grid points, respectively. Particles Stokes number values range from St ≈ 0.2 to 70. Sta...
متن کاملLagrangian velocity statistics in turbulent flows: effects of dissipation.
We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical simulation data. We show that this approach reproduces the shape evolution of velocity increment probability density functions from Gaussian to stretched exponentials as the time lag decreases from integra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2014
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2014.01.013